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Abstract

Generalized zero-label semantic segmentation aims to make pixel-level predictions for
both seen and unseen classes in an image. Prior works approach this task by leveraging
semantic word embeddings to learn a semantic projection layer or generate features
of unseen classes. However, those methods rely on standard segmentation networks
trained with large quantities of annotated data and may not generalize well to unseen
classes. To address this issue, we propose to leverage a class-agnostic segmentation
prior provided by superpixels and introduce a superpixel pooling (SP-pooling) module
as an intermediate layer of a segmentation network. Also, while prior works ignore the
pixels of unseen classes that appear in training images, we propose to minimize the
log probability of seen classes alleviating biased predictions in those ignore regions.
We extensively show that our (SP)2Net significantly outperforms the state-of-the-art
on different data splits of PASCAL VOC 2012 and PASCAL-Context benchmarks.
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Chapter 1

Introduction

1.1 Motivation

Semantic Segmentation is one of the most fundamental computer vision task, where
we try to find what is in the image and where it is located with pixel level accuracy.
More specifically we classify each individual pixel of the image as given class. Since
we are making predictions at the pixel level, we also call it as dense prediction task. It
has a huge set of applications in real life including autonomous driving, medical image
analysis and diagnosis, satellite Imagery etc. Deep learning based methods have been
successful in performing semantic segmentation with quite good accuracy. But these
methods require to train a model with huge set of parameters and lot of annotated
training data. Also, for real world setting it is near impossible to get annotated data
for all samples. We discuss these problems below :

Semantic Segmentation requires dense annotation.
Semantic Segmentation requires pixel level annotation for training data, where an-
notation effort is very expensive. There has been several attempts to reduce this
annotation effort. One such method is to use weak supervision signals like bounding
box, image level label etc, instead of pixel level annotation to semantically segment
the image. Still these methods cannot be used to segment novel classes which is never
seen in the training data.

Long-tail data distribution in real world scenario.
In real world setting, data distribution is long tailed. We see common classes more fre-
quently compared to rare classes. The data distribution follows an exponential curve
as shown in fig 1-1. For common classes for which sufficient samples are available we
can use supervised learning methods, while for classes for which only few samples
are present few-shot learning based approaches are used. For classes with no samples,
zero shot learning based methods are used.

These problems were tackled first by weakly supervised learning approaches that
utilize weaker forms of annotations, e.g., bounding boxes [25], key points [5], image-
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Figure 1-1: Data distribution in real world setting. For the tail classes we have very
few samples, while there are classes with no samples. Image from [37]

level labels [28], and scribble-level annotations [32]. Recently, few-shot semantic seg-
mentation methods have taken a different route by segmenting novel classes with only
a few labeled training examples. However, those methods are not capable of making
pixel-wise “zero-shot” predictions for the classes without a single label, which is an
important real-world scenario. Therefore, successful methods in this task have the
potential to significantly reduce the labeling efforts.

In the “zero-label” [61] setting, semantic segmentation models may have access
to the pixels from novel classes but they do not have access to their pixel labels. In
the generalized zero-label semantic segmentation (GZLSS) [61, 6, 31, 18], the goal
is to make pixel-level predictions for both seen classes with abundant labels and
novel classes without any label. Please note that the Generalised Zero label semantic
segmentation is a challenging problem because the model trained on seen classes
are highly confident on seen classes and thus performs poorly on the unseen classes.
Also, this problem is realistic as during evaluation we need to segment all the present
objects in an instance. In this thesis we target to solve the problem of Generalised
Zero-label semantic segmentation problem.

Prior methods mainly focus on learning feature generators [6, 31, 18] or a semantic
projection layer [61]. Moreover, those works rely on standard segmentation networks
i.e., DeepLab-v3+ [9] trained with large quantities of annotated data. The issues faced
by the prior methods are :

• Generalisation on unseen classes. The prior methods [6, 31, 18, 61] fail
to generalise well on the unseen classes without any training samples. These
methods rely on generated features from the segmentation backbone and do
not work on the improvement of these generated features.

• Biased prediction towards Seen classes. GZLSS suffers from the severe
data imbalance issue. With no training sample from the unseen class during
training, the model trained is highly biased towards the unseen classes. This
results in poor performance on the unseen classes. Prior method [61] solved
this issue with calibration factor hyperparameter, that reduces the confidence



Figure 1-2: Top row : Zero Label Semantic Segmentation (ZLSS) task. Bottom row :
Generalised Zero Label Semantic Segmentation (GZLSS) task. During training seen
classes pixels are only available. During evaluation, for ZLSS task model needs to
predict among novel classes only, while for the GZLSS task, model needs to predict
from the complete label set, ie seen and novel classes both. Image from [10]

of seen classes during evaluation. Such method is not optimal as we cannot have
a global calibration factor for all images in the evaluation.

Our main focus is to enable the segmentation networks to achieve better gen-
eralization for unseen classes along with removing this seen class baiseness during
training.

1.2 Contribution

In this work, we aim to solve the problem of Generalised Zero-label Semantic Seg-
mentation ie making pixel level predictions for both seen classes with abundant labels
and novel classes without any labels. We try to achieve better generalisation on the
unseen classes. At a high-level, we would like to explore superpixels [4, 41] i.e., groups
of pixels that share similar visual characteristics, to learn more generic image fea-
tures. While superpixels are intuitively beneficial for segmentation tasks due to their
precise boundaries and context information, how and where to incorporate them into
a convolutional neural network is not obvious.

We believe that aggregating features from the superpixel regions provides a generic
class-agnostic segmentation prior for segmentation networks such as DeepLab-v3+ [9]
and PSPNet [66]. To this end, we propose a superpixel pooling module as an inter-
mediate layer of segmentation networks. The resulting architecture lends itself better
for generalization to seen as well as unseen classes.

Furthermore, GZLSS suffers from the severe data imbalance issue, biasing the
predictions towards seen classes. Therefore, we devise a simple solution to resolve
this issue. Our main assumption is that the ignore regions of training images do not
contain pixels from seen classes. Note that this assumption holds true according to the



Unseen classes : 

         Image SPNet Ours GT 

Figure 1-3: In this example, our model can predict unseen classes (tv in row 1, and
sofa + cat in row 2) correctly compared to the baseline SPNet model. We integrate
a novel superpixel pooling module in the segmentation network along with a bias
reduction loss resulting in better generalization on the unseen classes as seen from
the example.
definition of GZLSS [61] where the ignore regions include only pixels from novel classes
and background. Based on this, we propose a bias reduction loss that minimizes the
log-likelihood of seen class predictions in the ignore regions. The insight is to treat
the unlabeled unseen classes as negatives for the seen classes and thus reduce their
confidence in the pixels that definitely do not belong to them. Compared to the
previous balancing strategies [6, 31], our bias reduction loss is highly efficient and
allows us to train the network end-to-end in a single-stage.

Our (SP)2Net augments the semantic projection network (SPNet) [61] with the
proposed superpixel pooling (SP) module and bias reduction loss. On PASCAL VOC
2012, our (SP)2Net improves the averaged harmonic mean mIoU (on 5 splits) of the
previous state of the art by 9.8%, while on the challenging PASCAL-Context dataset,
we achieve a remarkable improvement of 9.4%. We further provide an extensive model
analysis and qualitative results to give insights and show the effectiveness of our
approach.

Our main contribution can be summarised as :

• We achieve better generalisation on unseen classes with the help of superpixels,
that provides class-agnostic segmentation prior for the segmentation network.

• We solve the problem of seen class baiseness of the trained model with the help
of proposed bias-reduction loss.

• We outperform the existing state of the art on GZLSS on PASCAL VOC 2012
and PASCAL-Context datasets by significant margin.

1.3 Outline of the Thesis

The rest of the thesis is organised as follows : Chapter 2 covers the necessary back-
ground required for this thesis, Chapter 3 contains overview of the related work in



this domain, Chapter 4 explains our proposed method (SP)2Net in detail, Chapter 5
provides with different experiment results and chapter 6 discusses about the summary
and possible future work in this direction.





Chapter 2

Background

In this chapter we discuss the necessary background for this thesis. We begin with
discussing semantic segmentation. We discuss three major CNN based semantic seg-
mentation models, namely Fully Convolutional Network (FCN), DeepLabV3+ and
PSPNet. We discuss FCN as it forms the base of all CNN based segmentation models
and it is one of initial CNN based segmentation models. We then discuss DeeplabV3+
and PSPNet models as we use them in our work. We then discuss the Generalised
Zero-label semantic segmentation problem, followed by Semantic Projection Network,
on which our work is based.

2.1 Semantic Segmentation

Semantic segmentation is one of the most fundamental computer vision task, where
pixel level labels are predicted. Since, the predictions are at the pixel level, it is
also referred as dense prediction task. It has a huge array of applications ranging
from robotics, autonomous driving, medical image understanding to satellite image
understanding and weather predictions. Majority of the semantic segmentation mod-
els have a pretrained backbone model (for eg - Imagenet pretrained Resnet model)
which provides with the feature representation at smaller scale. This comprises of
the encoder part of the segmentation module. The difference in several approaches
comes from how the decoder part is implemented. In this background study, we dis-
cuss three important architectures namely FCN (Fully Convolution Network) [38],
DeeplabV3+ [9] and PSPNet [66] models. FCN model is the first deep learning
based semantic segmentation model, which forms the base of majority of the existing
semantic segmentation models. We also discuss DeepLabV3+ based model as it forms
the segmentation model used in our proposal. We also discuss PSPNet as we do a
comparison of performance of superpixel pooling for both DeepLabV3+ and PSPNet,
showing superpixel pooling works irrespective of segmentation backbone model.

Fully Convolution Networks
As the name suggests, it is a fully convolutional network that performs pixel wise
predictions. To make pixel level predictions, the last fully connected classification
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Figure 2-1: FCN based semantic segmentation. The last fully connected classification
layer is replaced with convolution layer for pixel level predictions. Image from [38]

layers of the network are replaced with convolution layers (see fig 2-1). The major
issue that arises is obtaining dense predictions. For dense predictions, this network
uses upsampling methods such as deconvolution. The final implementation uses a
stack of deconvolution layers with skip-connections from the corresponding encoder
layers in order to preserve the localisation of objects and edges.

DeepLabv3+ model
FCN based semantic segmentation model suffered from fuzzy and improper object
shape and boundaries due to excessive downsampling. To overcome this issue, expen-
sive post processing steps such as CRF [26] were applied. To provide better dense
representation with better object shape and boundaries, deepLab series of segmen-
tation models were proposed. We will discuss the best performing DeepLab series
model (DeeplabV3+) in this thesis as we are using it as our segmentation backbone.
The Deeplab series introduced the atrous convolution which is used in almost every
other semantic segmentation model. The atrous convolution is basically upsampling
convolution with holes which preserves the dense representation. This improves the
model performance. Further CRF based postprocessing is applied to improve upon
the predictions at the boundaries. To improve upon the deepLab model, deeplabV2
was proposed that contained the Atrous Spatial Pyramid pooling (ASPP) module.
Now instead of performing one Atrous Convolution, several atrous convolutions at
different scales were performed on the representation obtained from the segmenta-
tion backbone. This helped in capturing context information at different scale which
boosted the performance. DeeplabV3+ further improves on the DeepLabV2 by includ-
ing Global Average pooling [68] in the ASPP module along with improved decoder
structure. Also, it includes a connection from the intermediate encoder output to in-
termediate decoder output as shown in , for better object localisation. DeeplabV3+
is the best performing model among existing deeplab models.



Figure 2-2: DeepLabV3+ segmentation network. The feature representations from
the backbone model goes to Atrous Spatial Pyramid Pooling module which provides
the contextual information at various scales. Further the decoder network helps in
improving the segmentation result for the object boundaries. Image from [9]

PSPNet
PSPNet is another semantic segmentation model with significant improvement over
the FCN based model. It aims to make use of the contextual relations between objects
in the scene for better semantic segmentation predictions. To do so, it proposes Pyra-
mid Pooling module. The output of the backbone segmentation model goes to the
pyramid pooling module which does average pooling at different scales (see fig : 2-3)
on different subregions of the image. Further it also applies global average pooling for
getting global contextual prior which has been seen useful in image level classification
tasks. The pooled features from different parallel layers are concatenated together,
which forms the final representations. This representation goes to the decoder part
which has dilated convolution layers for dense representations.

2.2 (Generalised)Zero-label semantic segmentation

For the zero-label semantic segmentation task we are required to predict pixel level
labels that belong to only unseen classes. While for the generalised version, the labels
can be from both seen and unseen classes (ref ). This is a challenging task and in this
thesis we focus on solving the generalised version task. It is important to mention that
we call this task as zero-”label” and not zero-”shot” because the unseen class objects
are still present during the training, but the labels for such classes are ignored. Thus,



Figure 2-3: PSPNet Network Architecture. The feature representation from the back-
bone model is fed to the pyramid pooling module, which performs subregion average
pooling along with global average pooling. This provides with the necessary con-
textual information at different scales. The pooled representations are concatenated
which further goes to the decoder part for dense representations. [66]

we do not have apply loss function for such pixels (pixels from unseen classes) during
training. We use transfer of information from the seen classes to unseen classes using
the label embedding space for solving this task.

Word embeddings Word embeddings are representation of words in a fixed dimen-
sion space (generally lower dimension space). Assuming the vocabulary to be V , we
have word embedding for each word w P V , where w P Rd, such that d ăă |V |.
This helps in learning the latent representations of the word such that similar words
are near in the embedding space, and different words are far apart. We use word
embedding space to transfer knowledge from seen to unseen classes for our GZLSS
task. The class labels (both seen and unseen) are represented in a shared embedding
space. Since, this embedding space contains side information about the unseen class
labels, we utilise it for our GZLSS task. We use concatenation of two different type
of word embeddings namely word2vec and fasttext, as it shows best result for our
task (see [61]). Word2Vec and fasttext both uses context information of a word to
train a model to get its representation. For word2vec, we have two ways to obtain
the word embedding. One is the Continuous Bag of Word (CBOW) model where the
model predicts the current word from its context [for a fixed window], and other is
skip-gram model where from a given word, the model predicts its context. Fasttext is
inspired from Word2Vec where each word is treated as combination of n-grams, and
the corresponding vector is sum of the vector of these n-grams. This is specifically
helpful for getting the embedding of ”out of vocabulary” words, as it can be the sum
of the constituent n-grams vectors.

2.3 Superpixels

Superpixels [2, 4, 41, 55] are a group of pixels sharing some common features eg pixel
intensity. This grouping helps in reducing the computation overhead for some appli-
cations where computation on large number of pixels is expensive. Also, superpixels



Hierarchical segmented structure output of COB

image k = 0.5 k = 0.2 k = 0.1

Figure 2-4: Top row : Output of COB method, we see hierarchical segmented struc-
tures. Bottom row : Superpixels of different level with threshold parameter (k)

are far more information-rich compared to individual pixels. They have been useful in
many vision tasks including object detection [52, 63, 13] , saliency [47, 20], , seman-
tic segmentation [15], depth estimation [35, 34] etc. Superpixels can be obtained
by different methods such as Watershed based (Water Pixels [39, 40], Comapact
Watersheds [45]), Graph based (Normalised cut [49], Random Walk [17, 16], MCG-
Multiscale Combinatorial Grouping [4]), CNN based (COB - Convolutional Oriented
Boundaries [41]), clustering based (SLIC [1, 2], DASP [59]) etc. For our work we use
superpixels for GZLSS task. Superpixels can provide additional shape and contextual
information as prior which can improve performance of the model. We use COB based
superpixels as it shows best performance [41] among other superpixels.

Retrieving different level of superpixels. The output of COB based methods is a
hierarchical segmented structure as shown in 2-4. This is obtained by fusing different
ultrametric contour maps (UCM), which are obtained by a single pass through the
trained COB model (for more details refer [41]). The edge strength in the hierarchical
segmented structure can be thresholded to give superpixels of different scale 2-4. We
can see that for higher value of threshold parameter(k), we obtain lesser superpixels
and the superpixels are bigger in size on average, while for lower k we obtain more
superpixels with smaller sizes on average.



2.4 Semantic Projection Network

Semantic Projection Network (SPNet) is one of the initial works in the domain of
Zero-/Few-shot Semantic Segmentation. It uses knowledge transfer from the text do-
main (label embedding space) to visual domain (pixel level representation). It projects
each pixel representation obtained from the segmentation head to the label embed-
ding space. This projection gives the class probabilities on which classification based
loss function can be applied. We discuss SPNet in detail below :

Problem formulation.
We denote the set of seen classes as S, a disjoint set of novel classes as U and the
union of them as Y “ S Y U . Let T “ tpx, yq|x P X , yi P tI,Suu be the training set
where x is an image of spatial size H ˆW in the RGB image space X , y is its label
mask with the same size, and yi is the class label at pixel xi belonging to either one
of the seen classes S or ignore region labeled as I. Moreover, each class label is rep-
resented by the word embedding (e.g., word2vec [42]) associated with its class name.
We denote the word embedding matrices of seen and novel classes with As P RDˆ|S|

and Au P RDˆ|U | where D is the dimension of the word embedding. Given T , As

and Au, the goal of generalized zero-label semantic segmentation (GZLSS) is to learn
a model that is capable to make pixel-wise predictions among both seen and novel
classes.

Semantic projection.
We follow SPNet [61] to segment novel classes via mapping pixel features into a se-
mantic embedding space. Specifically, SPNet consists of a visual-semantic embedding
module and a semantic projection layer. The former (denoted as φ) is based on a
standard segmentation network (e.g., DeepLab-v3+ [9]), encoding each pixel xi as a
D-dimensional feature embedding φpxqi in the semantic embedding space. The latter
computes the compatibility scores between the pixel and word embeddings followed
by applying softmax that maps scores into a probability distribution,

Pcpxiq “
exp scpxiq

ř

c1PY exp sc1pxiq
(2.1)

where scpxiq “ φpxqTi ac and ac denotes the word embedding of class c. The scoring
function is capable to compute the compatibility score of a given pixel to any class
using its word embedding, thus enabling zero-shot prediction.

For a particular labeled training pixel pxi, yiq from seen classes S, the following
cross-entropy loss is optimized,

LCpxi, yiq “ ´ logPyipxiq (2.2)

Note that the image x might include pixels from unseen classes, but those pixels
are not labeled (i.e., yi “ 0) and their losses are ignore for ZLSS. The network can be
trained in an end-to-end manner by optimizing the above loss on the whole training



Figure 2-5: Illustration of SPNet [61] Model. It consists of two parts - Visual-semantic
Embedding and Semantic Projection. We obtain pixel representation from the visual-
semantic embedding module which further goes to Semantic Projection module for
obtaining the class probabilities.

set T of seen classes.

Once, the model is trained we can inference the pixel level predictions as :

fzlsspxiq “ arg max
uPU

ppyi “ u|xi;W
u
q (2.3)

where W u is the label embedding of the given unseen class u.

Data imbalance issue for GZLSS
For Generalised setting, both seen and unseen classes are required to be predicted.

This is a challenging task as the model trained without any samples of unseen classes,
is highly biased towards predicting the seen classes and gives very low confidence
score to unseen classes. To solve this issue, SPNet proposed to use a global calibration
factor λ. During evaluation, the seen class confidence are reduced with this calibration
factor, thus improving unseen class performance. Thus for GZLSS, the equation in
2.4 becomes :

fgzlsspxiq “ arg max
aPSYU

ppyi “ a|xi;W
a
q ´ γIpa P Sq (2.4)

where W a is the label embedding of the given seen/unseen class a, and I is the identity
function, which activates only when given embedding is from seen classes. Please note
that having a global calibration factor is not optimal, as class confidence is at pixel
level. We propose bias reduction loss in our work which reduces this seen class biasness
during training itself, thus removing the requirement of suboptimal calibration factor.





Chapter 3

Related Work

In this chapter we discuss the related work in this domain. More specifically we discuss
approaches to solve semantic segmentation problem with limited labelled data. We
also discuss about superpixels and it’s use in solving semantic segmentation in prior
works.

3.1 Zero-shot learning

Zero-shot learning aims to predict the novel classes that are not observed, by using
semantic embeddings e.g., attributes [29], and word2vec [43], which encode the sim-
ilarities between seen and unseen classes. Early works tackle this task by learning
attribute classifiers [29, 23] or learning a compatibility function [12, 3, 60, 64, 50]
between image and semantic embeddings. For the attribute classifier methods, the
approach is generally two-staged, where in the attributes are predicted in first stage,
and then class label is inferred as the class that has maximum similar attributes in the
second stage. [30] suggests two attribute based methods specifically Direct Attribute
Prediction (DAP) and Indirect Attribute Prediction (IAP). DAP based method uses
a decoupling intermediate attribute layer between images and layer of labels. During
training the parameters for attribute layer are learnt, while at test time the class la-
bels are estimated by MAP. On the other hand for IAP, the attribute layer is between
layer of labels (seen and unseen). During training, a classifier is learnt for each seen
class, while at test time, predictions for seen classes induces labelling of attributes,
which is used to infer unseen classes. CONSE [46] is another attribute based method,
where the image features are learnt from the seen classes and then they are projected
on label embedding space (word2Vec).

On the other hand, generalized zero-shot learning (GZSL) [7] requires the model
to predict both seen and unseen classes, which is more challenging due to the extreme
data imbalance issue. Since no training samples of the unseen classes are present, the
learnt model is highly confident on the seen classes and performs poorly on the unseen
classes. Some notable works for GZSL include generating features of novel classes [62,
27, 51, 69], and using unlabeled test data from novel classes [54] i.e., transductive ZSL.
The approach where features of novel classes are generated are generally two-staged.
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Figure 3-1: Attribute based Zero shot learning (ZSL) and Generalised Zero shot learn-
ing (GZSL). For ZSL, during training attributes and labels from seen classes are
available, while during test time, only unseen class labelss are present for evaluation.
Further for GZSL, training is similar to ZSL, ie only seen class labels and attributes
are available, but at test time, both seen and unseen classes are present.

The features of novel classes are generated in first stage, while an off-the-shelf classifier
is used to train on both seen and generated novel samples. Since, we have sufficient
generated samples of novel classes, the model bias towards seen classes are removed.
[27] uses conditional variational autoencoder to generate the features of the unseen
labels, where the latent codes obtained by the encoder are embedded with attribute
vector of the seen class during training. During evaluation, the trained model can be
used to generate the novel training samples given the attributes of the novel classes.
[62] uses attribute conditioned feature generating adversarial network to generate
the features of the novel classes. [51] further improves on the feature generating
approach, by learning a shared latent embedding space for image features and class
embedding via VAE, and ensuring cross aligment of both the latent features along
with distribution alignment of the latent distribution of both the modalities. [54] uses
transductive ZSL to overcome the seen class biaseness issue, by assuming unlabeled
novel class images are present during training. With this added information, the model
makes sure, that the novel class features are away from the seen class features in the
latent embedding space, during training and thus improves on the bias issue.

In contrast, we are interested in the GZLSS problem which requires making pixel-
wise predictions. We focus on addressing the challenges that are specific to the se-
mantic segmentation problem i.e., leveraging superpixels for better context modeling
and alleviating imbalanced issues using ignore regions.



3.2 (Generalised) Zero-label semantic segmenta-

tion

Data annotation for segmentation is very expensive and imprecise enough for the
large-scale dataset creation with numerous categories. Inspired by the success of zero-
shot image classification, zero-label semantic segmentation has been proposed recently
and became increasingly popular, which is able to segment a novel classes without
having their annotated masks during training. ZLSS aims to segment novel classes
without having their annotated masks during training. We focus on generalized zero-
label semantic segmentation (GZLSS) where the model is required to segment both
seen and novel classes. Prior works [61, 31, 6] tackle this task by adapting technics
from zero-shot image classification into segmentation networks e.g., learning semantic
projection layer [61] and generating pixel-wise features [31, 6] of novel classes, ignor-
ing the challenges that are specific to semantic segmentation. SPNet [61] proposed
to incorporate word embedding e.g., word2vec [42], into fully convolutional archi-
tectures [8] by learning a semantic projection layer. This semantic projection layer
projects the visual features onto the label embedding space. During evaluation, by
simply replacing embeddings for new classes, SPNet is enabled to segment unseen
objects. SPNet suffers from seen class biasness issue, as the model is trained on seen
class label samples only. Bucher et al. [6] developed a feature generator that synthe-
sizes pixel-wise features for unseen classes and train a segmentation model jointly
for this task. Both of these tasks are performed in two separate stages. They fur-
ther try to improve on the performance with self training, by using the pseudo labels
produced by the initial network for unseen classes. Hu et al. [22] suggests learning
from representative samples from the seen classes, as learning from noisy samples can
lead to performance drop. They provide a novel framework that identifies noisy sam-
ples, thus allowing network to learn only from representative samples. Recently, Li
et al. [31] improved the feature generator by exploiting the structural relation-based
constrain between seen and unseen categories. They try to capture the similarity
among classes (seen and unseen) in the label embedding space, and enforce them in
the generation of visual features, resulting in improvement of performance. Different
from aforementioned work, we significantly improve the zero-label and few-label se-
mantic segmentation by applying superpixel priors which provide pre-segmentation
and allowing our network focus on recognizing each region or object. Even without
feature generation which requires additional model parameters, we are able to achieve
very competing or even better results compared with current state of the arts. Our
proposed method improves the SPNet [61] by incorporating superpixels [41] into the
network for learning dense features that generalize better to unseen classes. Moreover,
we leverage ignore regions in training images to alleviate the imbalance issue, which
is more efficient than previous feature generation methods [31, 6] and can be trained
end-to-end in a single stage.



3.3 Superpixel and semantic segmentation

Superpixel [2, 4, 41, 55] and semantic segmentation [38, 8, 9, 21, 66] have a long history
in computer vision, which provides a pre-segmentation and understanding of images.
The convolutional encoder-decoder architectures represent images into structural fea-
ture maps and predict the class labels in the end. Generally, it requires expensive dense
annotations to train the structural output models. To address this issue, superpixel
has been combined with modern deep neural networks to boost semantic segmenta-
tion models trained on a variety of supervisions [14, 21, 33, 28, 25]. In particular,
it shows surprisingly promising results in a weakly supervised learning setup, owing
to its clustering capability on similar pixels. This property complements the lack of
training signals and provides useful boundary information for weakly supervised seg-
mentation setup, including image-level annotation [28], box-level annotation [25] and
partially labeled videos [21] etc. Kwak et al. [28] performed semantic segmentation
with superpixels as side information, with just image level labels. They had two staged
network, wherein weak annotations were generated in the first stage with the help of
superpixels, followed by a decoupled network in second stage that performs semantic
segmentation with labels predicted in first stage. Different annotations of a class from
first stage helps in learning better segmentation in second stage. He et al. [21] uses
multi-view unlabelled frames along with superpixel information to improve on the
semantic segmentation on the target frame. Different from previous works, we aim
to improve GZLSS by incorporating superpixels into segmentation networks. To the
best of our knowledge, we are the first to leverage superpixels in GZLSS.

3.4 Few-shot semantic segmentation

Another avenue related to our work is few-shot semantic segmentation, where it is
based on meta-learning approaches and the model aims to segment objects from the
same category to a support set. The models [65, 58, 48, 53, 57, 56] usually learn a
similarity/distance function and search regions which match the supportive images
well. Different from the above work, we will not have the labels for unseen classes;
instead we only have the images of unseen classes and thus call our task zero-label
segmentation. Specifically, we follow the established terminology in [61] without using
support sets and perform semantic segmentation in inference like fully supervised
models.



Chapter 4

Superpixel-Pooled Semantic
Projection Network (SP2Net)

We propose to incorporate a class-agnostic segmentation prior to the network to
achieve better generalization on novel classes and leverage the ignore regions to
address the biased prediction issue. Figure 4-1 shows an overview of our approach
(SP)2Net, consisting of three main components: (1) a novel superpixel pooling mod-
ule to capture class-agnostic segmentation priors, (2) a semantic projection layer [61]
for segmenting novel classes (introduced in Section 2.4), (3) a bias reduction loss in ig-
nore regions. In the following, we will describe our major contributions i.e., superpixel
pooling and the bias reduction loss.

4.1 Superpixel pooling module

Unlike SPNet [61] and other prior works [6, 31], we argue that relying on a standard
segmentation network, may not generalize well to unseen classes. Therefore, we de-
velop a novel superpixel pooling (SP-pooling) module which aims to facilitate feature
learning for GZLSS.

Integrating superpixels.
As labeled images from unseen classes are not available in GZLSS, learning generic
features or introducing prior information becomes important for achieving good gen-
eralization on unseen classes. We believe that superpixels could be particularly helpful
for GZLSS because they can provide precise and generic object boundaries. We incor-
porate the superpixels as a pooling layer in our segmentation network. The simplest
idea is to apply the superpixel pooling as a post processing step on the output prob-
ability scores of the network i.e., after the semantic projection layer (see Figure 4-1).
Although this indeed yields smooth predictions, the superpixels do not benefit feature
learning. An alternative is to pool the final feature map φpxq after the segmentation
head i.e., atrous spatial pyramid pooling (ASPP) module of DeepLab-v3+ [9] or PSP-
Net [66]. However, we found that applying SP-pooling before the ASPP yields best
performance as superpixels can guide the ASPP to learn more generic class-agnostic

29



Superpixel Pooling Module

Ignore Regions

W
or

d 
em

be
dd

in
gs

unseen

seen

Semantic Projection Layer

CNN

Superpixel Extraction

DeepLab

PSPNet
...

Motorbike
Person

Average
Pooling

Superpixel
Pooling Regions

Feature Maps Pooled 
Features Maps

Prediction
Word 

EmbeddingsFeature MapsInput Image

Classification and Bias Reduction Loss

Labeled
Regions 

Dot product

Label Mask

                Motorbike: unseenPerson: seen

...

Segmentation
Head

Figure 4-1: Overview of our (SP)2Net for generalized zero-label semantic segmenta-
tion. We propose to capture class-agnostic segmentation priors by introducing a novel
Superpixel Pooling Module, to be integrated into standard segmentation networks,
followed by a semantic projection layer [61] to embed pixel features into a semantic
space. Finally, we devise a bias reduction loss (LBR) to alleviate biased predictions
in ignore regions that belong to unseen classes (e.g. motorcycle).

information.

Superpixel pooling.
Pooling operation plays an important role in semantic segmentation to extract global
features [36] or pyramid features [67]. For efficiency, we apply simple average pooling
to each superpixel region (see Figure 4-2), which is parameter-free, and not sensitive
to the spatial size of the region. More specifically, given an input feature map Fin P

RKˆHˆW and corresponding superpixels tsn|n “ 1, ..., Nu of the input image, we
compute

Foutpk, i, jq “
1

|sn|

ÿ

pp,qqPsn

Finpk, p, qq, (4.1)

where pi, jq is a pixel in superpixel sn and k is the index of feature channels. After
repeating the above computation for every pixel, we obtain a pooled feature map
Fout P RKˆHˆW of the same size as the input Fin. Note that individual input images
in a mini-batch may have a different number of superpixels, but the output size of
the pooling operation does not depend on that number as Equation 4.1 assigns each
pixel within the same superpixel with the same feature embedding. Our superpixel
pooling module not only provides boundary information, but also context information
as prior for learning better representations to segment novel classes.

4.2 Superpixel Correction

We provide details on how we properly leverage the superpixel prior, which is not
perfect and is able to introduce noises into network potentially. The superpixels do
not always capture the useful regions for recognition and segmentation. On the one
hand, it tends to provide too small regions if we set a very small scale factor K,
which is lack of enough context and brings less improvement. On the other hand, a
superpixel may group multiple classes into one region, which will introduce noises to
the network and lead to negative effects on training. Therefore, we apply a superpixel
correction on the original superpixels, which helps us to deal with imperfect superpixel
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Figure 4-2: Illustration of our superpixel pooling. The color indicates individual su-
perpixel region.

computation.
Let the 2-d array SP be a superpixel partition for a given image x with sn being

the n-th region where sn “ tpi, jq|SPij ““ nu. We are able to inspect the GT labels
y inside sn . We regard the regions sn satisfying the following condition as success
cases:

maxlPSp|sn X py ““ lq|q

|sn|
ą α, (4.2)

We do superpixel pooling in these success regions and use individual pixel features
otherwise. As illustration in Figure 4-3, we will use the pixel features for a large
superpixel by considering the ground truth labels as Eq. (4.2). It helps us to utilize
wider context information as well as avoid noisy superpixel priors. In particular, we
only apply this superpixel correction during training that we touch the ground truth.
We will still use the superpixels without correction at the same scale factor K in
inference. Even though the superpixels in inference are not perfect, we are still able
to boost the baseline model significantly according to our study.

4.3 Bias reduction loss

In this section, we first explain ignore regions followed by introducing our bias reduc-
tion loss to alleviate the imbalance issue in GZLSS.

Ignore regions.
In zero-shot image classification, the training set must exclude any image from novel
classes to satisfy the “zero-shot” assumption. In contrast, in semantic segmentation,
where an image consists of dense labels from multiple object classes, it is not realistic
to build a training set that contains no pixels from novel classes due to a large num-
ber of class co-occurrences. Therefore, a common practice in GZLSS is to follow the
training set of supervised learning but ignoring the pixels from novel classes. Note
that prior work [61] allows the models to process those pixels i.e., during the forward
pass, but do not apply any loss on them as their labels are not accessible.

Bias reduction loss.
We argue that ignoring certain regions in the image severely biases the predictions.
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Figure 4-3: A toy illustration of superpixel correction. SP1 contains comparable num-
bers of pixels from two classes C1 and C2. In contrast, SP2 only contains the C1 class,
and we regard SP2 as a success case.

Indeed, a DNN trained with only seen classes will be overconfident even on regions
of novel classes at test time. Although their labels are not available, it is certain that
the ignore regions do not belong to the seen classes, which can serve as strong prior
information for alleviating the bias issue. Formally, for a particular unlabeled pixel
xi from the ignore regions i.e., yi R S, we propose the following bias reduction loss,

LBRpxiq “
ÿ

cPS
´ logp1´ Pcpxiqq (4.3)

where Pc denotes the probability of pixel xi being predicted as class c, defined in
Equation 2.1. This loss essentially treats seen classes as negative in the ignore regions
and reduces the probability of those pixels being classified as any of the seen classes.

Discussion. This loss enjoys several advantages over existing balancing strategies for
GZLSS. SPNet [61] adopts a post hoc calibration technique that reduces the scores
of seen classes by a constant factor at the test time. However, tuning a global calibra-
tion factor that works for all pixels is extremely hard because the optimal factors for
different pixels can be completely different. In contrast, we learn to alleviate the bias
issue from the training data, resulting in a model that does not require any calibration
at test time. Compared to feature generation approaches [6, 31], our bias reduction
loss is conceptually simpler and can be optimized end-to-end. Specifically, those ap-
proaches require an additional training stage to learn the feature generator and novel
class classifiers. Despite the simplicity, we outperform them [6, 31] significantly as
shown experimentally.

4.4 Training and inference

As a preprocessing step, we first compute superpixels for each image with an off-the-
shelf superpixel method (more details in Section. ??). Our full model (SP)2Net then
minimizes the following objective:

HˆW
ÿ

i“0

1ryi P SsLCpxi, yiq ` 1ryi R SsλLBRpxiq (4.4)



where 1ryi P Ss denotes an indicator function (= 1 if yi P S otherwise 0). LC is
the classification loss defined in Equation 2.2 learns the semantic projection layer on
pixels of seen classes. LBR is the bias reduction loss defined in Equation 4.3 which
handles the biased prediction issue in ignore regions. λ is hyperparameter to tune,
controlling the trade-off between learning semantic projection and bias reduction.
Our proposed superpixel pooling layer and bias reduction loss are both differentiable,
which allows us to train the model end-to-end.

Once trained, we make a prediction by searching for the class with the highest
probability among both seen and unseen classes, i.e. arg maxcPY Pcpxiq.





Chapter 5

Experiments

In this chapter, we first describe our experimental setting, then we present (1) our
results comparing with the state-of-the-art for the GZLSS task on 10 different data
splits from two benchmark datasets, (2) model analysis on each model component
and impact of hyperparameters, (3) our qualitative results comparing with SPNet.

Implementation details
We use PASCAL VOC 2012 [11] (10582 train / 1449 val images from 20 classes) and
PASCAL-Context [44] (4998 train / 5105 val images from 59 classes) datasets. We
adopt the same data splits used by ZS3Net [6] and CSRL [31] for a fair comparison.
Specifically, we use 5 different splits for both datasets which have 2, 4, 6, 8, and
10 unseen classes in an increment manner respectively. For PASCAL VOC 2012,
the unseen classes are 2-cow+motorbike, 4-airplane+sofa, 6-cat/tv, 8-train+bottle
and 10-chair+potted-plant. The unseen classes are incremental since unseen classes
from split 2 are contained in split 4, which are further present in split 6 and so
on. Similarly for PASCAL-Context we have unseen classes as 2-cow+motorbike, 4-
sofa+cat, 6-boat+fence, 8-bird+tvmonitor and 10-keyboard+airplane.

Unless otherwise stated, we follow ZS3Net [6] and CSRL [31] to use DeepLab-
v3+ [9] with the ImageNet-pretrained ResNet-101 [19] as the backbone for a fair
comparison. For the semantic embeddings, we use the concatenations of fasttext [24]
and word2vec [42] embeddings (each with dimension 300) because of its superior per-
formance as shown in SPNet [61]. We adopt the SGD optimizer with initial learning
rate 2.5ˆ10´4 and use “poly” learning rate decay [8] with power=0.9. We set momen-
tum and weight decay rate to 0.9 and 0.0005 respectively. Unless otherwise stated,
we apply our superpixel pooling module before the ASPP layer in DeepLab-v3+ as
it performs better.

Superpixel extraction and correction.
We employ a pretrained convolutional oriented boundaries (COB) [41] provided by
the authors to compute the superpixels because it is computationally efficient and
generalizes well to unseen categories.

More specifically, we compute the boundary probability with COB followed by
applying a threshold (K) to obtain the superpixels of different scales. A higher value
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of K implies larger superpixels that are noisy, while a lower value means smaller
superpixels. Unless otherwise stated, we use K = 0.2 for our experiments. Having a
higher threshold result in learning from noisy signals, while lower threshold restricts
the context information.

We observe that superpixels can be noisy and propose to fix the issue by a simple
heuristic: ignoring the superpixels that do not intersect with the ground truth label
mask sufficiently. We take the intersection of superpixel mask with ground truth la-
bel masks, and decide on whether to keep the superpixel region for pooling, if the
superpixel’s intersection with any ground truth label mask is greater than a given
threshold. Usually we keep high threshold values to avoid noisy superpixels. Note
that such correction is only applied during the training phase and not in inference as
the ground truth is not available for test images.

Evaluation metric.
We compute mean Intersection of Union (mIoU) since it is widely used for semantic
segmentation [8, 9]. We follow [61, 6, 31] to report mIoU for seen classes (S), unseen
classes (U) and harmonic mean (HM) of both, which is computed as

HM “
2 ˚mIoUseen ˚mIoUunseen

mIoUseen `mIoUunseen

(5.1)

The HM measures how well the model balances seen and unseen mIoU, i.e. the
HM would be high if both are high. It is also a better evaluation metric for our task,
compared to overall mIoU (which is mean of all classes) because it can affect the
performance score when one of the scores (seen mIoU or unseen mIou) is low, which
is not the case for overall mIoU.



5.1 Comparing with State-of-the-Art

Splits Method
PASCAL VOC 2012 PASCAL-Context

Seen Unseen HM Seen Unseen HM

U-2

ZS3Net [6] 72.0 35.4 47.5 41.6 21.6 28.4
CSRL [31] 73.4 45.7 56.3 41.9 27.8 33.4
SPNet [61] 72.0 24.2 36.3 42.9 4.6 8.3

SPNet + LBR 69.1 40.4 51.0 34.4 16.2 22.1
(SP)2Net 73.4 71.3 72.4 38.1 52.9 44.3

U-4

ZS3Net [6] 66.4 23.2 34.4 37.2 24.9 29.8
CSRL [31] 69.8 31.7 43.6 39.8 23.9 29.9
SPNet [61] 70.3 32.1 44.1 36.0 11.1 17.0

SPNet + LBR 61.3 44.8 51.8 38.0 23.8 29.3
(SP)2Net 81.7 37.9 51.8 34.6 47.0 39.9

U-6

ZS3Net [6] 47.3 24.2 32.0 32.1 20.7 25.2
CSRL [31] 66.2 29.4 40.7 35.5 22.0 27.2
SPNet [61] 70.3 26.6 38.6 36.3 11.5 17.4

SPNet + LBR 71.5 36.5 48.4 39.5 16.7 23.4
(SP)2Net 78.6 52.8 63.1 35.6 45.1 39.8

U-8

ZS3Net [6] 29.2 22.9 25.7 20.9 16.0 18.1
CSRL [31] 62.4 26.4 37.6 31.7 18.1 23.0
SPNet [61] 66.2 22.7 33.9 33.2 12.6 18.3

SPNet + LBR 65.6 23.1 34.2 26.3 17.1 20.7
(SP)2Net 72.8 27.6 40.1 33.1 26.8 29.6

U-10

ZS3Net [6] 33.9 18.9 23.6 20.8 12.7 15.8
CSRL [31] 59.2 21.0 31.0 29.4 14.6 19.5
SPNet [61] 68.8 17.9 28.4 30.3 10.0 15.0

SPNet + LBR 75.1 16.3 26.8 33.5 12.8 18.6
(SP)2Net 73.2 19.7 31.0 36.6 20.7 26.4

Table 5.1: Comparing with the state-of-the-art methods on the generalised zero-label
semantic segmentation task on 10 different splits (U-k: split with k unseen classes) of
PASCAL VOC 2012 and PASCAL-Context datasets. We report mIoU (in %) on seen
classes (S), unseen classes (U) and harmonic mean of them (HM).

We compare our (SP)2Net to the following methods.

• SPNet [61] embeds pixel features into a semantic space and produces a probability
distribution with softmax.

• ZS3Net [6] first trains a standard DeepLabv3+ model on the training set followed
by a feature generator which synthesizes pixel-wise features of novel classes using
their word embeddings. Finally, novel class classifiers are learned with the generated
features to fix the imbalance issue.

• CSRL [31] augments ZS3Net by a structural feature generator that relates seen and
novel classes. It is currently the state of the art in GZLSS on both our benchmarks.

We evaluate SPNet ourselves as it is not evaluated on the same benchmark, while
results of ZS3Net and CSRL are directly taken from the papers. In addition, we
combine SPNet and our bias reduction loss i.e., SPNet + LBR.

We report the results of generalized zero-label semantic segmentation under 5
different data splits of PASCAL VOC dataset in Table 5.1 (left). First, our (SP)2Net
outperforms feature generation approaches (i.e., CSRL and ZS3Net) significantly in



almost all cases in terms of harmonic mean mIoU (HM). In particular, on the Unseen-
2 split, we achieve a remarkable HM of 72.4%, improving the state-of-the-art method
CSRL (56.3%) by 16.1%. Compared to CSRL, our (SP)2Net not only improves the
unseen mIoU by a wide margin, but also boosts the seen mIoU in most of cases e.g.,
we obtain 78.6 seen mIoU (v.s. 66.2 of CSRL) and 52.8 unseen mIoU (v.s. 29.4% of
CSRL) on Unseen-6 split. These results indicate that our (SP)2Net generalizes well
to segment both seen as well unseen classes by incorporating the super-pixel pooling
module and bias reduction loss.

Moreover, we observe that our (SP)2Net outperforms SPNet + LBR significantly
in 4 out of 5 cases on PASCAL VOC dataset in terms of HM e.g., 72.4% of ours v.s.
51.0% of SPNet + LBR on Unseen-2 split, 63.1% of ours v.s. 48.4% of SPNet + LBR on
Unseen-6 split. These compelling results clearly show the importance of our superpixel
pooling module. Indeed, by integrating the class-agnostic segmentation prior from
superpixels, our (SP)2Net learns dense image features that are more suitable for
GZLSS. Another observation is that SPNet + LBR improves the HM of SPNet in
almost all cases and even surprisingly outperforms CSRL in some cases, confirming
that our bias reduction loss LBR is able to alleviates the strong bias towards seen
classes.

In addition, on five data splits with different level of difficulties, our (SP)2Net
consistently outperforms other methods in terms of HM, establishing a new state-
of-the-art on PASCAL VOC. These results are encouraging because our (SP)2Net
is substantially simpler and can be trained end-to-end in a single-stage. In contrast,
CSRL and ZS3Net employ a three-stage learning algorithm where the segmentation
backbone, feature generator and classifiers are learned in isolation. It is worth noting
that CSRL, ZS3Net and SPNet indeed process the ignore regions but they fail to
apply any loss on those pixels. However, our (SP)2Net employs the bias reduction
loss which makes full use of the ignore regions for balancing the model.

Finally, the GZLSS results on the PASCAL Context dataset are shown in Ta-
ble 5.1 (right). Our (SP)2Net again outperforms the state-of-the-art methods con-
sistently on its five data splits by a wide margin in terms of HM. Although this
dataset is more challenging than PASCAL VOC, our (SP)2Net still achieves large
performance gains over the closest baseline CSRL i.e., +10% on U-4 split, +12.6% on
U-6 split, +6.6% on U-8 split, and +6.9% on U-10 split. These results indicate that
our (SP)2Net is able to handle complex scenes with diverse classes, which is partially
due to our superpixel pooling module that enables better representation learning.
Although other methods perform better on seen classes, they suffer from a significant
performance drop on the unseen class mIoU. This supports our claim that SPNet,
CSRL and ZS3Net may overfit to seen classes as they rely on the standard DeepLab-
v3+ [9]. Our (SP)2Net generalizes better to novel classes because it leverages the
class-agnostic segmentation prior provided by superpixels.



5.2 Model analysis

Splits
Location of PASCAL VOC 2012 PASCAL-Context
SP-pooling S U H S U H

U-2

w/o SP-pooling 69.1 40.4 51.0 34.4 16.2 22.1
output layer 73.7 52.5 61.3 35.9 18.0 24.0
after ASPP 81.8 70.9 76.0 44.8 56.3 49.9
before ASPP 73.4 71.3 72.4 38.1 52.9 44.3

U-4

w/o SP-pooling 61.3 44.8 51.8 38.0 23.8 29.3
output layer 62.5 47.6 54.0 39.8 25.3 30.9
after ASPP 76.1 45.5 56.9 34.4 40.0 37.0
before ASPP 81.7 37.9 51.8 34.6 47.0 39.9

U-6

w/o SP-pooling 71.5 36.5 48.4 39.5 16.7 23.4
output layer 72.4 37.8 49.7 41.4 18.2 25.2
after ASPP 71.4 37.3 49.1 38.5 17.1 23.7
before ASPP 78.6 52.8 63.1 35.6 45.1 39.8

U-8

w/o SP-pooling 65.6 23.1 34.2 26.3 17.1 20.7
output layer 67.3 24.7 36.1 27.5 19.0 22.4
after ASPP 72.9 27.1 39.5 35.4 20.2 25.7
before ASPP 72.8 27.6 40.1 33.1 26.8 29.6

U-10

w/o SP-pooling 75.1 16.3 26.8 33.5 12.8 18.6
output layer 76.5 16.1 26.6 34.6 14.2 20.1
after ASPP 77.0 12.9 22.2 35.9 17.5 23.6
before ASPP 73.2 19.7 31.0 36.6 20.7 26.4

Table 5.2: Applying superpixel pooling (SP-pooling) module at different layers of
DeepLab-v3+. We report mIoU of seen classes (S), unseen classes (U) and harmonic
mean of them (H).

In this section, we conduct extensive ablation experiments to show the effectiveness
of our network design and impact of hyperparameters. Here, we report results for all
splits of PASCAL VOC 2012 and PASCAL-Context datasets.

Location of superpixel pooling.
We provide results for superpixel pooling at different layers of the segmentation net-

work (i.e., DeepLab-v3+ [9]) on all splits of both PASCAL VOC 2012 and PASCAL-
Context datasets in Table 5.2. We tried three different locations for DeepLab-v3+
i.e., on the output probability scores of the output layer, on the output feature maps
of its Atrous Spatial Pyramid Pooling (ASPP) module, and on the input feature
maps of the ASPP module (output of the segmentation backbone of DeepLab-v3+).
Please note that superpixel pooling at the output layer simply does pooling of the
logit scores and is just a post-processing step on the predictions during evaluation.
The output feature maps of ASPP consist of the concatenated feature maps obtained
after parallel atrous convolutions of different scale on the features obtained form the
ResNet backbone. On the other hand, in the input to ASPP are the visual features
obtained by the last convolutional layer of Resnet backbone.

In general, all three variants of our superpixel pooling module improve the segmen-
tation network compared to without using SP-pooling, confirming again the advantage



of using superpixels. In addition, we observe that applying SP-pooling in the interme-
diate layers (i.e., before and after ASPP) outperforms pooling the output, implying
that SP-pooling improves feature learning. We see around 13 percent improvement
in using superpixel pooling in PASCAL VOC 2012 dataset compared to around 14
percent improvement in PASCAL-Context dataset. Finally, we observe that applying
superpixel pooling before the ASPP module performs the best in 7 out of 10 cases,
confirming that superpixels provide class-agnostic shape priors for the ASPP.

We also observe that superpixel pooling at the output layer performs worse com-
pared to superpixel pooling of the intermediate layers. This is understandable as
pooling the outputs or last layer simply smooths the predictions or has limited effects
on improving the feature learning. On the other hand, pooling before ASPP provides
the ASPP module the class-agnostic segmentation prior to learn better features.

Splits
Method Segmentation PASCAL VOC 2012 PASCAL-Context

SP-pooling Network S U H S U H

U-2

w/o DeepLab-v3+ 69.1 40.4 51.0 34.4 16.2 22.1
w/ DeepLab-v3+ 73.4 71.3 72.4 38.1 52.9 44.3
w/o PSPNet 78.8 25.2 38.2 38.5 8.5 13.9
w/ PSPNet 79.6 27.7 41.1 43.4 18.9 26.4

U-4

w/o DeepLab-v3+ 61.3 44.8 51.8 38.0 23.8 29.3
w/ DeepLab-v3+ 81.7 37.9 51.8 34.6 47.0 39.9
w/o PSPNet 66.7 32.8 44.0 38.4 16.4 22.9
w/ PSPNet 75.7 33.5 46.5 41.4 19.9 26.9

U-6

w/o DeepLab-v3+ 71.5 36.5 48.4 39.5 16.7 23.4
w/ DeepLab-v3+ 78.6 52.8 63.1 35.6 45.1 39.8
w/o PSPNet 69.7 22.3 33.8 37.1 12.3 18.5
w/ PSPNet 70.5 25.5 37.4 39.1 14.8 21.5

U-8

w/o DeepLab-v3+ 65.6 23.1 34.2 26.3 17.1 20.7
w/ DeepLab-v3+ 72.8 27.6 40.1 33.1 26.8 29.6
w/o PSPNet 60.7 19.9 30.0 35.4 12.0 17.9
w/ PSPNet 68.2 24.5 36.0 41.0 14.7 21.7

U-10

w/o DeepLab-v3+ 75.1 16.3 26.8 33.5 12.8 18.6
w/ DeepLab-v3+ 73.2 19.7 31.0 36.6 20.7 26.4
w/o PSPNet 50.6 16.3 24.6 34.1 10.9 16.6
w/ PSPNet 73.8 15.1 25.1 40.4 12.9 19.6

Table 5.3: Superpixel pooling module (SP-pooling) based on two segmentation net-
works i.e., DeepLab-v3+ [9] and PSPNet [66]. We report full results under all splits
of PASCAL VOC 2012 and PASCAL-Context datasets. w/o - without SP-pooling,
w/ - with SP-pooling

Effect of segmentation networks.
The goal of this study is to determine the effect of using different segmentation

networks that provide critical segmentation heads on top of the CNN backbone.
We investigate two popular segmentation networks i.e., DeepLab-v3+ [9] and PSP-
Net [66] (both are with ResNet101 as the backbone). With same backbone, the major
difference in both of these networks lies in the way treat the output features of the
backbone to capture the contextual information. DeepLab-v3+ employs ASPP mod-
ule which does parallel atrous pooling at different scales and concatenate the result,



while PSPNet does simple average parallel pooling at different scales and then sum
up the features obtained. DeepLab-V3+ further employs a decoder network that tries
to improve on the dense representations.

In Table 5.3 we show the this result under all splits of PASCAL VOC 2012 and
PASCAL-Context datasets. For both DeepLab-v3+ and PSPNet, we observe that
our SP-pooling significantly improves the performance (in terms of harmonic mean)
without SP-pooling under all splits. These results demonstrate that our superpixel
pooling is an effective architecture change to improve GZLSS performance and is not
only limited to DeeplabV3+ backbone architecture. We further observe that improve-
ment is much better in DeepLab-v3+ compared to PSPNet suggesting DeepLab-v3+
as better segmentation model for our GZLSS task.

Splits Method
PASCAL VOC 2012 PASCAL-Context
S U H S U H

U-2

SPNet 72.0 24.2 36.3 42.9 4.6 8.3
+ SP-Pooling 78.4 26.2 39.3 40.0 7.3 12.3
+ LBR 69.1 40.4 51.0 34.4 16.2 22.1
+ SP-Pooling + LBR 73.4 71.3 72.4 38.1 52.9 44.3

U-4

SPNet 70.3 32.1 44.1 36.0 11.1 17.0
+ SP-Pooling 79.6 35.4 49.0 38.2 11.9 18.2
+ LBR 61.3 44.8 51.8 38.0 23.8 29.3
+ SP-Pooling + LBR 81.7 37.9 51.8 34.6 47.0 39.9

U-6

SPNet 70.3 26.6 38.6 36.3 11.5 17.4
+ SP-Pooling 70.0 28.2 40.2 39.4 12.7 19.2
+ LBR 71.5 36.5 48.4 39.5 16.7 23.4
+ SP-Pooling + LBR 78.6 52.8 63.1 35.6 45.1 39.8

U-8

SPNet 66.2 22.7 33.9 33.2 12.6 18.3
+ SP-Pooling 61.6 23.3 33.9 33.6 14.3 20.2
+ LBR 65.6 23.1 34.2 26.3 17.1 20.7
+ SP-Pooling + LBR 72.8 27.6 40.1 33.1 26.8 29.6

U-10

SPNet 68.8 17.9 28.4 30.3 10.0 15.0
+ SP-Pooling 65.3 19.1 29.6 28.8 10.7 15.6
+ LBR 75.1 16.3 26.8 33.5 12.8 18.6
+ SP-Pooling + LBR 73.2 19.7 31.0 36.6 20.7 26.4

Table 5.4: Ablation result for Superpixel pooling module and bias reduction loss on
PASCAL VOC 2012 and PASCAL-Context datasets.

Ablations on superpixels and bias reduction loss.
We perform ablation studies with respect to our superpixel pooling and bias re-

duction loss and report the full results under all the splits in Table 5.4. We start from
our baseline SPNet [61] and gradually add components to it. We first add superpixel
pooling, we then add bias reduction loss to the baseline and then show results on our
full model.

First, we observe that our superpixel module, i.e. SPNet + SP, improves the seen,
unseen and harmonic mean mIoU of SPNet significantly on both datasets. We observe
an improvement of 2.1 % on harmonic mIoU on PASCAL VOC 2012 and about 1.9 %
improvement on harmonic mIoU on PASCAL-Context dataset. This again confirms
our claims that the superpixel provide a strong class-agnostic segmentation prior and
is able to facilitate the network to learn better dense image features for the seen as
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Figure 5-1: Effect of using different λ under all splits of PASCAL VOC 2012 and
PASCAL-Context datasets.

well novel classes. Second, adding the bias reduction loss LBR to SPNet immediately
leads to a huge boost on the harmonic mean on both datasets, implying that the
bias reduction loss is an effective way to alleviate the imbalance issue. We observe
around 5.5 % harmonic mIoU improvement on average on PASCAL VOC 2012 and
around 7.6 % harmonic mIoU improvement on average on PASCAL-Context dataset.
Finally, putting all components together i.e., SPNet + SP + LBR, yields our full
model (SP)2Net which outperforms all other baselines consistently (average gain of
15.5 % and 20.8 % on Harmonic mIoU on PASCAL VOC 2012 and PASCAL-context
respectively wrt SPNet) on all the metrics and datasets and indicates the comple-
ments of the superpixel pooling and bias reduction loss.

Impact of hyperparameter λ.
Hyerparameter λ is associated with the bais reduction loss which tries reduce the

seen class bias prediction of trained models and thus solving the data imbalance is-
sue. In Equation 4.4, λ plays a trade-off between the classification loss LC and bias
reduction loss LBR. Variation in different values of λ results in different behavior of
the network. We show the results of using different λ in Figure 5-1 (left) and observe
the following. (1) Without the bias reduction loss (λ “ 0), the harmonic mean is
rather low, indicating that the model fails to handle the imbalance issue well. This
model is equivalent to SPNet with superpixel pooling with no bias reduction loss.
(2) using a lambda in the range of r0.75, 1.5s significantly boosts the harmonic mean,
confirming the effectiveness of our bias reduction loss. (3) it seems to have a trend
of performance drop with a large λ because the model would fail to learn a precise
semantic projection layer when putting too much weights on the bias reduction loss.
The network would focus more on bias reduction loss in such case and would try to
minimise confidence of seen classes in ignore regions and overlook the cross entropy
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Figure 5-2: Effect of using different K (right column) under all splits of PASCAL
VOC 2012 and PASCAL-Context datasets.

loss, resulting in poorer performance.

Impact of hyperparameter K.
We use the pretrained COB [41] with a threshold K to extract superpixels at different
scales. This thresholding is applied at output of COB, which is the hierarchical seg-
mented structure. The different hierarchical edges are denoted by probability scores
which can be thresholded giving superpixels of different scale. A larger K indicates
coarser superpixels, which provide larger context regions but may introduce more
noise. For higher K, smaller superpixels join together to form a bigger superpixel,
and sometimes they can have intersections with multiple classes. This introduces
noise and the superpixels are not perfect. On the other hand smaller K means finer
superpixels which are comparatively smaller in shape (on average) compared to the
ones with higher K. Figure 5-1 (right) shows that increasing K from 0.0 to 0.2 leads
to a significant performance boost on both datasets, confirming that our superpixel
pooling is indeed helpful to learn generic features for unseen classes. But the per-
formance decreases by further increasing K, which can be explained by the wrong
pooling regions from noisy superpixels.

5.3 Qualitative results

We show our qualitative results in Figure 5-3 for the unseen-6 split of PASCAL
VOC 2012 and PASCAL-Context datasets. We observe from the figure that unseen
classes are not correctly classified by the baseline SPNet. With the introduction of
bias reduction loss, the performance further improves compared to SPNet for most of
the samples. Our proposed model, further improves on top of (SPNet + LBR) giving
best qualitative image compared to baselines.



For PASCAL VOC 2012, we highlight the following unseen classes that our models
segment much better than the SPNet: sofa (row 1, row 2), cat (row 2, row 5), aeroplane
(row 2), tv (row 3), cow (row 4, row 5) and motorbike (row 3), and point out several
observations: (1) By introducing bias reduction loss with SPNet (SPNet + LBR), we
are able to overcome the biasness to the seen classes and then successfully recognize
some unseen objects such as tv, sofa etc, although the output masks remain to improve
further. In particular, in first row, we observe part of sofa being incorrectly predicted
as motorbike, which is corrected by the introduction of bias reduction loss. Similar
examples include sofa again in second row, tv in first row, cat fifth row and cow in fifth
row, where part of the novel object is incorrectly predicted, which is further corrected
by bias reduction loss. (2) Superpixel plays an important role for stronger performance
w.r.t more smooth prediction over objects (e.g., the areoplane in the second row, cow
in fourth row, cat in second row, ) as well as learning better representations for zero-
label segmentation (e.g., the cat in the second, fifth row, cow in fourth, fifth row).
The smoothing over object shape is result of the average superpixel pooling, enabling
better prediction across the boundaries of the objects. (3) Because of the challenges of
zero-label setup, objects from seen classes are also imperfectly predicted, for example,
the bottle in the first row is partially predicted as the unseen class motorbike. In
contrast, our full model with superpixels segments the entire outline and outputs
more favorable masks than SPNet and SPNet + LBR.

In the PASCAL-Context dataset, models also predict fine-grained classes for the
background including water, wall, grass etc. From the figure, we clearly see our model
not only produces more precise results for the object class but also emits smooth and
accurate background segmentation. We highlight the following unseen classes which
our model segments much better than SPNet : boat (row 1), cow (row 1), sofa (row
2, row 3), motorbike (row 5) amnd cat (row3, row 5). Similar to PASCAL VOC 2012,
we emphasize the following points: (1) We observe the proposed bias reduction loss
predicts more unseen classes, for example, it adjusts the prediction from SPNet to the
cow and cat classes in the first row and 3rd row respectively. (2) The superpixel helps
our model recognize the unseen objects better and outputs the entire masks of the
objects (i.e., the boat, cat, motorbike for the first, second and third row). Other such
examples include motorbike and cat in fifth row, where superpixel pooling have helped
improve the features learnt for the novel classes. It also has helped in smoothing over
the object shape as can be seen in first row, where cow’s mask is smoothed over its
shape, compared to the prediction of SPNet + LBR. Similar for cat’s mask prediction
in third row, where such smoothing helps in improving the performance. (3) Our
(SP)2Net segments the background classes more smoothly on the inner regions and
precisely on the boundaries. For eg, ground in third row and floor in fourth where
both SPNet and SPNet + LBR has incorrect predictions. On the other hand, our
(SP)2Net predicts these classes smoothly.

Consequently, we conclude our (SP)2Net obtained significant improvements over
the baseline SPNet [61] and ranked at today’s state of the art performance for the task
of generalized zero-label semantic segmentation according to a series of qualitative and
quantitative comparison to the baseline method [61] and other recent approaches [31,
6].
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Figure 5-3: Qualitative comparisons with SPNet [61] and SPNet + LBR on PASCAL
VOC 2012 and PASCAL-Context datasets under the U-6 setting. Black color indicates
ignore background regions.





Chapter 6

Conclusions, Summary and Future
Works

We present a novel approach (SP)2Net for the challenging generalized zero-label se-
mantic segmentation task. The main novelties lie in the superpixel pooling module
that aggregates features from adaptive superpixel regions and an efficient bias re-
duction loss that minimizes the confidence of seen classes in the ignore regions. We
empirically show that our superpixel pooling module significantly improves the gen-
eralization to novel classes and our bias reduction loss effectively alleviates the data
imbalance issue. We benchmark our (SP)2Net against various baselines on 10 differ-
ent splits from two datasets and establish a new state of the art on all data splits in
GZLSS.

6.1 Summary.

In this thesis, first we introduced the problem of Generalised Zero Shot Semantic
Segmentation. The goal of the task is to predict pixel labels which can be both
seen or novel at evaluation. GZLSS task is challenging as the trained network needs
to predict the pixel label for both seen and novel classes, while being trained on
only seen class labels. The trained networks are usually biased towards predicting
seen class labels. Semantic segmentation task requires pixel level annotation which is
expensive, and solving GZLSS task helps in reducing this annotation effort. Also, the
data distribution in real word setting is long tailed. Getting pixel level annotation for
rare (tail-end classes) is difficult. GZLSS caters to solving semantic segmentation for
such classes.

We further discuss existing approaches to solve GZLSS task. Existing approaches
to solve this task either suffer from the seen label biased prediction issue or are unable
to produce quality visual representations that generalises well to novel classes. Our
proposed (SP)2Net aims to solve these two important issues for GZLSS task. Next,
we also discuss other related works in the domain. Specifically we discuss existing
work on Zero-Shot learning, Few-shot semantic segmentation and superpixel guided
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semantic segmentation. We show how existing work is different compared to our work.
After we discuss, existing SPNet model. We use SPNet as our baseline model, which
uses semantic projection layer to compute the compatibility of pixel features and class
label embeddings. We also discuss, the data imbalance issue for SPNet model, which
results in seen label biased predictions.

Next, we present our (SP)2Net for GZLSS task. We extend SPNet by introducing
superpixel pooling module and an additional bais reduction loss. It consists of three
major segments, namely superpixel pooling module, semanitc projection module, bias
reduction loss. The superpixel pooling module is applied at the head of the backbone
segmentation network (eg DeepLab-v3+). It aggregates features from adaptive su-
perpixel regions which helps in learning representations that generalises well on the
unseen classes. Our superpixel pooling is very simple and doesn’t require any param-
eter. We simply average the pixel features of a given superpixel region and replace
each pixel feature with the averaged feature value. It is able to provide boundary
information along with contextual information as priors to the network. Despite of
its simplicity, this pooling method shows to improve generalisation on unseen classes.
Superpixels are often noisy and pooling features in a such superpixels results in degra-
dation of performance. To overcome training from such noisy signals, we presented
superpixel correction, that makes sure we do superpixel pooling on correct superpix-
els only. Next, we introduce the bias reduction loss. Since, we train with no samples
of unseen classes, the trained model is highly biased towards seen classes. The bias
reduction loss helps in solving this biaseness towards seen classes by minimizing the
confidence of seen classes in ignore regions. After applying bias reduction loss, we are
able to solve seen label biased predictions.

Following, we present experiments to validate our claims. We evaluated our (SP)2Net
on two datasets PASCAL VOC 2012 and PASCAL-Context on 10 different datasplits.
We outperformed the existing state of the art in most of the data-splits. We presented
ablation study to study the imapact of superpixel pooling location and found pooling
the output of segmentation head (ie before ASPP module in DeepLab-v3+) performs
best. We also perform ablation study the impact of superpixel level (size) on model
performance. We observe performance drop for coarser superpixels because of wrong
pooling of noisy superpixels. Further to study the importance of superpixel pooling
we also tried to change the segmentation backbone and found improvement in model
performance with different backbone, suggesting our pooling module works with other
segmentation backbones as well. We also provide qualitative images to show the qual-
itative improvement of our model compared to SPNet model, and SPNet model with
bias reducetion loss.

6.2 Future Work.

Exploiting superpixel for GZLSS task is a novel approach and it opens further areas
of improvement in the same GZLSS task. We discuss possible future work involving



superpixels and GZLSS below :

• Pseudo label based improvement. We can work on Pseudo label based
improvement on our current work. The pseudo labels obtained for the unseen
classes by the current model can further be used as training samples for unseen
classes. In order to provide consistency for the pseudo labels, we can use majority
voting for a label in a given superpixel.

• Superpixel based Self Supervision. In the current work we focussed on
improving the representations learnt, that could generalise well on the unseen
classes. We can further work on this improvement with additional superpixel
based self supervision loss during training. The core idea being, the features
belonging to same superpixel should be near in representation space compared
to features belonging to different superpixels. This idea can be exploited to
improve on the existing learned representations.

• Superpixel Ensemble method. Currently, the (SP)2Net model uses a fixed
defined (corrected) superpixel. But having a predefined superpixel for pooling
is suboptimal. Instead the model should be able to give weight to different
available superpixels for a given region of interest and do weighted pooling.
This would remove the requirement of superpixel correction step and improve
performance.

• Uncertainity minimisation for transfer learning. The SPNet method uses
transfer learning from seen to unseen classes for GZLSS task. The pixel fea-
tures belonging to class boundaries (or non-discriminative regions) are uncertain
about the class prediction and thus learning from such pixels is not optimal.
We should reduce this uncertainity in learning. Our (SP)2Net method helps in
performing superpixel pooling for entire superpixel region, thus reducing this
uncertainity. But with current average pooling, we provide equal wieghtage to
all pixel features in a superpixel, which is not correct. With adaptive weighted
average pooling with learnable weights, we can further solve this issue.





Appendix A

More Qualitative Results

We provide qualitative results for different splits (split-2 - Figure A-1, split-4 - Fig-
ure A-2, split-6 - Figure A-3, split-8 - figure A-4 and split-10 - Figure A-5) for both
PASCAL VOC 2012 and PASCAL-Context datasets. From those figures, we can ob-
serve our final model achieves significant improvements compared to the baseline
SPNet. For example, even though there are only two unseen classes in Figure A-
1, SPNet is affected and omits unstable and non-smooth results on unseen classes
motorbike or cow. Besides, we can also clearly see the benefits of applying our bias
reduction loss, which adjusts many regions from seen classes to unseen. For example,
in the 3rd row of Figure A-2 for PASCAL VOC 2012, SPNet only predicts a small
portion of the sofa, even it does not have a complex combination of various colors. In
contrast, the SPNet with our new loss and our final model are able to segment the
sofa successfully. Last but not least, we also find our model with superpixels produces
much better boundaries compared to SPNet and SPNet+LBR in both datasets and
splits.

Consequently, we demonstrate the effectiveness of our proposed model and two
components on generalized zero-label semantic segmentation.
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Figure A-1: Qualitative comparisons with SPNet and SPNet + LBR on PASCAL
VOC 2012 and PASCAL-Context datasets under the Unseen-2 setting. Black color
indicates ignore background regions.
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Figure A-2: Qualitative comparisons with SPNet and SPNet + LBR on PASCAL
VOC 2012 and PASCAL-Context datasets under the Unseen-4 setting. Black color
indicates ignore background regions.
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Figure A-3: Qualitative comparisons with SPNet and SPNet + LBR on PASCAL
VOC 2012 and PASCAL-Context datasets under the Unseen-6 setting. Black color
indicates ignore background regions.
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Figure A-4: Qualitative comparisons with SPNet and SPNet + LBR on PASCAL
VOC 2012 and PASCAL-Context datasets under the Unseen-8 setting. Black color
indicates ignore background regions.
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Figure A-5: Qualitative comparisons with SPNet and SPNet + LBR on PASCAL
VOC 2012 and PASCAL-Context datasets under the Unseen-10 setting. Black color
indicates ignore background regions.
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